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ments of the sparking potential in oxygen were made 
in chamber B at a base pressure of 10~2 Torr and the 
values are in excellent agreement with those found in 
chamber A at a base pressure of 10~2 Torr; the values 
are in excellent agreement with those found in chamber 
A at a base pressure of 10~9 Torr. This indicates that the 
sparking potential of oxygen is unaffected by the 
presence of the ordinary background impurities up to 
partial pressures of about 10~2 Torr. Also, in all the 
measurements it was found that the sparking potential 
is independent of whether or not the cathode was 
irradiated with uv light, indicating that the sparking 

1. INTRODUCTION 

RECENTLY, numerical estimates for the critical 
probabilities that arise in two percolation problems 

of physical interest have been given by a number of 
authors.1-5 In the bond problem, described by Broadbent 
and Hammersley,6 one studies percolation through a 
"random maze" of paths (bonds) which are "open" with 
probability p and "blocked" with probability q=l—p. 
We shall treat the case when the "maze" is an infinite 
crystal lattice. In the site problem introduced by Domb,7 

one supposes the sites of the lattice to be occupied with 
probability p and vacant with probability q. Site prob­
lems are more general since every bond problem can be 
made isomorphic with a site problem on a suitably 
chosen covering lattice by the bond-to-site transforma­
tion.8 A very complete discussion of the underlying 

1 H. L. Frisch, J. M. Hammersley, and D. J. A. Welsh, Phys. 
Rev. 126, 949 (1962). 

2V. A. Vyssototsky, S. B. Gordon, H. L. Frisch, and J. M. 
Hammersley, Phys. Rev. 123, 1566 (1961). 

3 H. L. Frisch, E. Sonnenblick, V. A. Vyssototsky, and J. M. 
Hammersley, Phys. Rev. 124, 1021 (1961). 

4 P. Dean, Proc. Cambridge Phil. Soc. 59, 397 (1963). 
6 C. Domb and M. F. Sykes, Phys. Rev. 122, 77 (1961). 
6 S. R. Broadbent and J. M. Hammersley, Proc. Cambridge Phil. 

Soc. 53, 629 (1957). 
7 C. Domb, Nature 184, 509 (1959). 
8 J. W. Essam and M. E. Fisher, J. Math. Phys. 2, 609 (1961). 

potential is independent of the magnitude of Jo, at 
least up to values of Io= 10~n A. 
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physical problems is given in the references quoted 
above. 

Percolation problems on infinite lattices are charac­
terized by the occurrence of a critical probability pc, 
above which there is a nonzero probability of a site being 
a member of an infinite "cluster" of connected sites. 
Estimates for pc for the more important crystal lattices 
have been obtained by Monte Carlo methods1-4 and 
from exact series expansions.5 It is the object of the 
present paper to develop the series method. 

It was suggested by Domb9 that the method of exact 
series expansions could be applied to a study of percola­
tion problems. In particular the critical probability 
could be investigated by expanding the mean size of 
finite clusters S(p) as a power series in p. A series of 
positive terms results and hence the radius of conver­
gence of the expansion can be identified with the critical 
percolation probability pc. Subsequently, series develop­
ments for S(p) were published and examined briefly by 
Domb and Sykes5 who also suggested that the mean 
cluster size in the critical region could be investigated by 
series methods. Domb and Sykes found the behavior of 
the coefficients not altogether smooth, particularly in 

9 Conference of the Physical Society on "Fluctuation Phe­
nomena and Stochastic Processes" held at Birkbeck College, 
London, England, 19-20 March, 1959, and briefly reported in 
Ref. 7. 
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the initial stages, and this makes extrapolation difficult. 
The successful exploitation of information in series ex­
pansion form demands an accurate knowledge of their 
radius of convergence and for this reason the location of 
the critical concentration pc is of prime importance. 

We have derived extra coefficients for the expansions 
of S(p) by applying the theory of cooperative phe­
nomena in crystals10 to these problems. Details of the 
various devices that have been employed will be pub­
lished separately and we shall confine our present treat­
ment to stating only those aspects of the technique that 
are germane to our present purpose of extrapolation. 
If the mean size of finite clusters be expanded in 
powers of p 

S(p) = T,»anp», (1.1) 

it can be shown that the successive coefficients an are 
equivalent to an enumeration problem on the lattice 
considered, and in particular the ^th coefficient for the 
bond problem can be expressed as a linear sum of high-
temperature lattice constants of n lines. For a precise 
treatment of lattice constants reference should be made 
to the review by Domb.10 Expansions whose coefficients 
depend on lattice constant data also occur in two other 
physical problems; the high-temperature expansion for 
the susceptibility of the Ising model11,12 in powers of the 
usual counting variable v==ta,nhK 

xW=E»M», (1.2) 
and the non-self-intersecting chain generating function 

C(x) = Y,nCnX
n (1.3) 

which arises in the simple lattice model of a polymer.13-15 

Expansions of this type have been much studied and an 
account of their salient features has been given byDomb 
and Sykes.16 It seems well established that we may write 

bn^n9vc-
n, (1.4) 

where in (1.4) vc is related to the Curie temperature 
through the relation vc=ta,nhJ/kTc and in (1.5) xc 

is the inverse of the limiting or critical attrition 
parameter, pt. 

The indices g, h are found to be only dependent on the 
dimensionality (D) of the lattice considered and 

g = i for Z>=2, 

g = l for D = 3 , (1.6) 

A=i for Z>=2, 

A=i for D=3. 
10 C. Domb, Advan. Phys. 9, 149 (1960). 
11 T. Oguchi, J. Phys. Soc. Japan 6, 31 (1951). 
12 M. F. Sykes, J. Math. Phys. 2, 52 (1961). 
13 M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959). 
14 M. F. Sykes, J. Chem. Phys. 39, 410 (1963). 
15 B. J. Hiley and M. F. Sykes, J. Chem. Phys. 34, 1531 (1961). 
"•C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961). 

Confidence in the results (1.6) is based partly on the 
existence of exact results for some two-dimensional 
lattices in the Ising case17 and partly on the fact that the 
same parameters g, h give satisfactory results for lattices 
such as the face-centered cubic and diamond lattice 
which differ greatly in structure.18 For loose-packed 
lattices it proves necessary to average odd and even 
terms to smooth out an oscillation which, however, de­
cays with increasing n. In view of the close similarity 
in the underlying enumeration problems it seems a 
reasonable hypothesis that we may write in (1.1) 

an~nipc-
n, (1.7) 

and this would imply a singularity in the mean cluster 
size S(p) of the form l/(pc—p)3+1* The relatively poor 
behavior of the early terms already noticed is aggra­
vated by the fact that loose-packed lattices exhibit a 
persistent even-odd oscillation which does not fall off as 
n increases. Our object has been to seek a suitable 
smoothing procedure and an over-all asymptotic be­
havior which is only dimensionality dependent. As a 
result of extensive numerical experiments, including the 
Pade-approximant19'20method, we have been led to quite 
a simple result of the form (1.7) and we shall give the 
evidence in this paper and use it to estimate pc for the 
more usual crystal lattices. We shall conclude that we 
may write in (1.7) 

i = l l / 8 for Z>=2, 

7=11/16 for Z)=3. 

Recently, exact values for the critical probabilities of a 
number of two dimensional problems have been given21 

and this enables the validity of series expansion extra­
polations to be guaged. Once the index j in (1.7) is fixed, 
more accurate estimates of pc can be made. 

2. TRIANGULAR LATTICE 

As a detailed example we study the triangular lattice 
since the critical probability for the site {pc

s—h) a n d 
the bond (pcB= 0.347296) problem are known exactly.21 

Denoting the site and the bond problem by superscripts 
S and B we find 

S(p)8=l+6p+l&p+4&f+126pi+3Q0p*+750p* 
+1686£7+4074£8+8868£9+ • • •, (2.1) 

5(^)B=l+10^+46^2+186^3+706^4+2568^5+9004^6 

+30 894£7+103 832£8+343 006p9+ • • •. (2.2) 

The successive ratios p„*= an/an-\ in the bond series can 
be studied as they stand while the corresponding site 
ratios oscillate somewhat. To maintain a consistent 

17 M. E. Fisher, Physica 25, 521 (1959). 
18 J. W. Essam and M. F. Sykes, Physica 29, 378 (1963). 
19 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961). 
20 J. W. Essam and M. E. Fisher, J. Chem. Phys. 38,802 (1963). 
21 M. F. Sykes and J. W. Essam, Phys. Rev. Letters 10, 1 

(1963). 



A312 M , F . S Y K E S A N D J . W. E S S A M 

!>>> 

0.4 

feV) 
0.3 

0.2 

0.1 

TABLE II. Bond problem. Two-dimensional lattices: successive 
estimates for the critical probability /?n= (n-\-j)/npni 7 = 11/8. 

0.5 Kn 0.0 
FIG. 1. Successive estimates for the critical percolation proba­

bility (1/pn -—• pc) plotted against 1/n. (A) Triangular lattice site 
problem. Exact limit pc

s(T) =0.5. (B) Triangular lattice bond 
problem. Exact limit pc

B(T) =0.3473. (C) Face-centered cubic 
bond problem. 

treatment throughout, we shall, therefore, define the 
ratios of alternate terms by 

pn— (an/an-2) 1/2 (2.3) 

and always work with this quantity. In Fig. 1 we plot 
the successive l/p» for the bond and site problem 
against 1/n. I t will be seen that the over-all behavior is 
tending to linearity and that the true critical values are 
well indicated. We shall assume that 

lim pn=p=l/pc (2.4) 

We next evaluate the successive approximations to the 
index j defined by 

jn=n(pn-p)/p (2.5) 

and present these in Table I. The entries are plotted in 
Fig. 2 against 1/n. Convergence is seen to be relatively 
slow, but the data are consistent with the assump­
tion that the two sequences have a common 

TABLE I. Estimates for j for the site and bond problems 
on the triangular lattice. 

n 

4 
5 
6 
7 
8 
9 

j n sites 

1.2915 
1.2500 
1.3193 
1.2973 
1.3227 
1.3204 

j n bonds 

1.4423 
1.4523 
1.4416 
1.4321 
1.4349 
1.4149 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

pe exact 
Monte Carlo 

estimates* 
Monte Carlo 

estimatesb 

Triangular 

0.3430 
0.3431 
0.3442 
0.3449 
0.3451 
0.3460 

0.3473 
0.341±0.011 

0.329±0.021 

Simple 
quadratic 

0.5079 
0.5100 
0.4998 
0.5074 
0.4982 
0.5057 
0.4981 
0.5048 

0.5000 
0.493±0.013 

0.492±0.011 

Honeycomb 

0.6719 
0.6940 
0.6953 
0.6517 
0.6471 
0.6997 
0.6567 
0.6307 
0.6784 
0.6755 
0.6265 

0.6527 
0.640±0.018 

0.635db0.020 

» See Ref. 2. 
b See Ref. 4. 

limit, close to 1.375= 11/8. Because of the simple nature 
of this result we shall make the hypothesis that j is 
exactly 11/8, although the numerical evidence is not 
conclusive on this point. 

As remarked in the Introduction, any bond problem 
can be made isomorphic with a site problem on a 
suitably chosen covering lattice. Because of this we 
have sought a common limit for the indices for the site 
and bond problem on the triangular lattice. I t may be 
objected that, in general, the covering lattice of a two-
dimensional bond problem is a two-dimensional lattice 
with crossing bonds and the evidence for the existence 
of an index which is only dimensionality dependent 
comes from lattices without crossing bonds. However, 
the covering lattice for the honeycomb lattice (bond 
problem) is the Kagome lattice (site problem), and the 
indices for these two problems must be identical. I t 
follows that if our hypothesis of indices for the site and 
bond problem is viable then these indices must be equal. 
We would further suggest that the evidence of this 
section supports the view that the indices found for the 
Ising problem and quoted in (1.6) will be valid for 

1.4 

FIG. 2. Successive estimates j n for the index for the site (S) and 
bond (B) problems on the triangular lattice plotted against 1/n. 
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TABLE III . Site problem. Two-dimensional lattices: successive estimates for the critical probability /?»= (n+j)/npn, 7 —11/8. 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Limits 

Monte Carlo* 
Monte Carlob 

Honeycomb 
matching 

lattice 

0.2860 
0.2952 
0.2987 

0.30±0.01 

Simple 
quadratic 
matching 

lattice 

0.3969 
0.4075 
0.4054 
0.4066 
0.4073 

0.410db0.010 

0.387±0.014 

Triangular 

0.5156 
0.5079 
0.5100 
0.5038 
0.5047 
0.5028 
0.5026 

0.5000 
(exact) 

0.493±0.018 
0.486±0.017 

Simple 
quadratic 

0.5954 
0.6455 
0.6010 
0.5922 
0.6126 
0.6037 
0.5986 
0.5886 

0.590±0.010 

0.581±0.015 
0.580±0.018 

Honeycomb 

0.6889 
0.7292 
0.6719 
0.7689 
0.7774 
0.6908 
0.7268 
0.6904 
0.6789 
0.7649 

0.70 ±0.01 

0.688±0.017 
0.688±0.015 

a See Ref. 3. 
*> See Ref. 4. 

lattices with crossing bonds. This is equivalent to the 
statement that "second neighbor" interactions or longer 
range forces do not affect qualitatively the critical be­
havior of the Ising model. 

3. CRITICAL PROBABILITIES FOR 
TWO-DIMENSIONAL LATTICES 

Following closely the procedure given by Domb and 
Sykes16 we now estimate the radius of convergence of the 
expansions (2.1) and (2.2) by calculating 

0W= (n+j)/nPn (3.1) 

for j= 1.375. The quantity I3n should converge to pc with 
almost negligible slope. Even if the estimate for j is 
incorrect @n must still converge to pc> In Table II we 
give the j3» for the bond problem on the triangular, 
simple quadratic, and honeycomb lattices. The expan­
sions on which this and subsequent tables are based are 
given in the Appendix. The values for the triangular 
lattice are converging smoothly and the last entry is 
within \°/Q of the limit. Graphical extrapolation of the 
entries against \/n could be used to improve this if pc 

were not known. The simple quadratic estimates oscil­
late about the exact limit of § with a final amplitude of 
1%, the average of the last pair being 0.5014. The 
honeycomb lattice yields a comparatively poor se­
quence. The slow convergence of expansions for this very 
loosely packed lattice is well known.22 The average of the 
last four entries (0.6528) is close to the true limit. 

In Table III we give corresponding estimates for the 
site problem on a number of two-dimensional lattices. 
For the triangular, the exact value of pc=h is closely 
indicated, the last entry being within §%. For the simple 
quadratic lattice the exact value has not been given but 

it is possible to show23 that if pe($.Q.) is the limit for this 
lattice and ^C(S.Q.M.) is the limit for the simple quad­
ratic lattice with second neighbors, which we shall call 
the simple quadratic matching lattice, then 

#c(S.Q.)+MS.Q.M.)=l. (3.2) 

As might be expected from the behavior of the bond 
series for the triangular and honeycomb lattices which 
also form a matching pair, the lattice with the lower 
critical value is the more rapidly convergent. By 
graphical extrapolation for the simple quadratic we 
estimate 

£C(S.Q.) = 0.580±0.020, (3.3) 

but this can be improved by extrapolating instead the 
matching lattice as 

#C(S.Q.M.) = 0.410±0.010 (3.4) 

and using the relation (3.2) to give 

£C(S.Q.) = 0.590±0.010. (3.5) 

In a similar way we have estimated the limit for the 
honeycomb lattice from its matching lattice which is the 
honeycomb lattice with second and third neighbors. 

The final estimates in Tables II and III would seem 
consistently better then the Monte Carlo estimates of 
Refs. 2, 3, and 4 for all but the most loosely packed 
honeycomb lattice although the differences are very 
small in all cases. As noticed by these authors the Monte 
Carlo estimates are slightly biased towards too small a 
value. For example, for the matching pair of the site 
problem on the simple quadratic lattice and the corre­
sponding second neighbor lattice Dean quotes 0.580 
±0.018 and 0.387±0.014, respectively. If we take the 

22 M. F. Sykes and M. E. Fisher, Physica 28, 919 (1962). 

23 Unpublished. The result can be established by the methods 
outlines in ReL 21. 
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TABLE IV. Bond problem. Three-dimensional lattices: successive 
estimates for the critical percolation probability /3n= (n-\-j)/npn, 
i-11/16. 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 

Limit 
Monte Carlo* 

fee 

0.11 898 
0.11 891 
0.11 897 
0.11902 

0.119 ±0.002 
0.125±0.005 

bee 

0.1804 
0.1790 
0.1793 
0.1789 
0.1791 
0.1788 

0.178 ±0.005 

sc 

0.2520 
0.2483 
0.2482 
0.2477 
0.2478 
0.2473 
0.2476 

0.247 ±0.005 
0.254±0.013 

Diamond 

0.4097 
0.3906 
0.3914 
0.3932 
0.3892 
0.3888 
0.3900 
0.3881 
0.3888 

0.388 ±0.005 
0.390 ±0.011 

» See Ref. 2. 

sum as 0.967db0.032 the true value (1.00) falls just out­
side those limits. 

4. CRITICAL PROBABILITIES FOR THREE-
DIMENSIONAL LATTICES 

No exact result has been given for the critical proba­
bility of any three-dimensional lattice. Proceeding in a 
manner analogous to Sec. 2 we examine the expansion 
for the bond problem on the face-centered cubic lattice 
since this is the most rapidly convergent of the usual 
three-dimensional lattices. We find 

S(p)B= l+22p+234p2+2348p*+22726p* 
+ 214642£5+1993002£6+ • • • (4.1) 

Defining the ratios pn as in the previous section, we 
calculate the successive linear intercepts pn' given by 

Pn=nPn— (n— l ) p « - l . (4.2) 

(The quantities l/pn are plotted in Fig. 1. It is seen that 
their behavior is again linear but with a different slope.) 
This yields 

p / = 8.42 706, 

p5'= 8.38 583, (4.3) 

p6'= 8.38 246, 

and we take p=8.38 as a first approximation to the 
limit. Using this value we obtain as estimates for the 
slope 

y 4 = 0.7040, 

i 5 = 0.7047, (4.4) 

ie= 0.7050. 

These estimates are of course dependent on our choice 
of p, but if they are compared with the corresponding 
estimates for the triangular lattice in the second column 
of Table I it appears that the j value for the face-
centered cubic is almost exactly a half that found in two 
dimensions. We therefore make the hypothesis that j is 
11/16 for the three-dimensional problem and give in 
Tables IV and V the corresponding fin for the bond and 
site problems on the diamond, face-centered cubic, a See Ref. 3. 

body-centered cubic, and simple cubic lattice. It will be 
seen that our choice of j has effectively removed the 
"slope" from all these eight series of estimates and this 
confirms the over-all correctness of the hypothesis that 
this is primarily dimensionality dependent. The extra­
polated limits are consistently lower than the Monte 
Carlo estimates of Frisch et al. by an amount of the 
order of the standard error quoted by these authors. 

5. GENERAL CONCLUSIONS 

We have found that exact series expansions for the 
mean size of finite clusters can be used to estimate the 
critical percolation probability of an infinite lattice and 
we have proposed a formal procedure for this purpose. 
In two dimensions the extrapolated values are in good 
agreement with the exact values where known and are 
very slightly higher than Monte Carlo estimates. It 
seems that published Monte-Carlo estimates for two-
dimensional lattices are consistently too low by about 
their standard error. In three dimensions the series esti­
mates are consistently below the Monte Carlo estimates 
by an order of magnitude of about the standard error. 
We suggest that the different critical behavior of two-
and three-dimensional structures introduces a bias into 
the Monte Carlo estimates. In the series method the 
difference in j should compensate any bias properly. 

We have made the hypothesis that in two and three 
dimensions the appropriate index (j) is 11/8 and 11/16, 
respectively, and have adopted these values in our extra­
polation procedure. We stress that we have adopted 
these appealingly simple fractions as a working rule 
only, and that we have not found the evidence con­
clusive. We think the evidence presented supports the 
view that percolation problems in two and three dimen­
sions give rise to a dimensionality-dependent index j 
and that 

;=1.375±0.03 for D=2, 

i=0.6875±0.05 for D=3. (5.1) 

Near p=pc the mean size of clusters will thus exhibit a 
singularity of the form 

i/(pc-py+i, (5.2) 

TABLE V. Site problem. Three-dimensional lattices: successive 
estimates for the critical percolation probability fin= (n-\-j)/npn, 
7 = 11/16. 

n 

3 
4 
5 
6 
7 
8 
9 

10 
Limit 
Monte Carloa 

fee 

0.1897 
0.1957 
0.1950 

0.195 ±0.005 
0.199 ±0.008 

bee 

0.2208 
0.2498 
0.2375 
0.2397 
0.2458 

0.243 ±0.010 

sc 

0.2820 
0.3067 
0.3093 
0.3161 
0.3082 
0.3071 

0.307 ±0.010 
0.325 ±0.023 

Diamond 

0.4097 
0.3906 
0.4200 
0.4353 
0.4369 
0.4290 
0.4206 
0.4270 

0.425 ±0.015 
0.436 ±0.012 
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or l/(pc—p)2'zn in two dimensions and l/(pc—p)1Mn in 
three dimensions. There is, therefore, a much sharper 
growth of large clusters in two dimensions than in three 
dimensions as the critical concentration is approached 
from below. This latter conclusion is unaffected by rela­
tively small uncertainties in the exact value of j 
appropriate to any individual case. 

The mean size of finite clusters for p>pc, and also the 
probability of a site or bond being a member of an 
infinite cluster, can also be expanded as power series and 
we shall treat this problem in a subsequent paper. 
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APPENDIX 

Coefficients for expansion of S(p) for bond and site problems. 
We quote the successive ar in tabular form [6'(^) = 1 + S r arp

r~\. 

Two-dimensional bond problems. 

Triangular Plane square Honeycomb 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

10 
46 

186 
706 

2568 
9004 

30 894 
103 832 
343 006 

6 
18 
48 

126 
300 
762 

1668 
4216 
8668 

21988 
43 058 

16 
32 
54 

100 
182 
328 
494 
984 

1572 
2656 
4212 
8162 

Two-dimensional site problems 

Plane 
Honeycomb square 

matching matching 
lattice lattice Triangular 

Plane 
square Honeycomb 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
66 
312 
1368 
5685 

8 
32 
108 
348 
1068 
3180 
9216 

6 
18 
48 
126 
300 
750 
1686 
4074 
8868 

4 
12 
24 
52 
108 
224 
412 
844 
1528 
3152 

3 
6 
12 
24 
33 
60 
99 
156 
276 
438 
597 

Three-dimensional bond problems 

Face-centered Body-centered 
cubic cubic 

Simple 
cubic 

Three-dimensional site problems 

Face-centered Body-centered 
cubic cubic 

Simple 
cubic 

Diamond 

1 
2 
3 
4 
5 
6 
7 
8 
9 
.0 
.1 

22 
234 
2348 

22 726 
214 642 

1 993 002 

14 
98 
650 
4202 
26162 

163 154 
984 104 

6 015 512 

10 
50 
238 
1114 
4998 

22 562 
98 174 
434 894 

1 855 346 

6 
18 
54 
162 
456 
1302 
3630 

10 158 
27 648 
77 022 
206 508 

Diamond 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

12 
84 
504 
3012 

17 142 

8 
56 
248 
1232 
5690 

26 636 
113 552 

6 
30 
114 
438 
1542 
5754 

19 574 
71958 

4 
12 
36 
108 
264 
708 
1668 
4536 

10 926 
28 416 


